LC 2015: Paper 2

Question 7 (40 marks)

Question 7 (a)

Note: You can see from the measurements on the diagram that it is not obviously drawn to scale. To draw it to scale would make the smaller circle tiny making it difficult to see measurements.

Trigonometry (page 16)
Pythagoras' theorem
Consider the right-angled triangle $A T B$.
Apply Pythagoras.
$(3 r)^{2}+(8 r)^{2}=(20 \sqrt{73})^{2}$
$9 r^{2}+64 r^{2}=400 \times 73$
$73 r^{2}=400 \times 73$
$r^{2}=400$
$\therefore r=\sqrt{400}=20 \mathrm{~cm}$

$$
c^{2}=a^{2}+b^{2}
$$

Marking Scheme Notes

Question 7 (a) [Scale 15C (0, 5, 12, 15)]
5: - $B T$ drawn correctly

- Pythagoras formula with some correct substitution
- Recognising $|\angle A T B|=90^{\circ}$

12: • Pythagoras formula fully substituted
Question 7 (b)
Area of quadrilateral $A B K H=$ Area of rectangle $T B K H+$ Area of right-angled triangle $A B T$
Area $=(8 r)(r)+\frac{1}{2}(3 r)(8 r)=8 r^{2}+12 r^{2}=20 r^{2}=20(20)^{2}=8000 \mathrm{~cm}^{2}$

Marking Scheme Notes

Question 7 (b) [Scale 15C (0, 5, 12, 15)]
5: - Indicates two areas

- Effort at area of rectangle only
- Effort at area of triangle only

12: - Area of triangle correct

- Area of rectangle correct

Question 7 (c) (i)

$$
\begin{aligned}
& \tan \theta=\frac{8 r}{3 r}=\frac{8}{3} \Rightarrow \theta=\tan ^{-1}\left(\frac{8}{3}\right)=69.44^{\circ} \\
& |\angle H A P|=2 \theta=138.9^{\circ}
\end{aligned}
$$

Marking Scheme Notes
Question 7 (c) (i) [Scale 5C (0, 2, 4, 5)]
2: $\cdot \tan (\angle H A B)=\frac{160}{60}$ or equivalent in \sin or \cos
4: $\cdot|\angle H A B|$ in degrees

Formulae and Tables Book

Length and area:

 Are/sector [page 8]

Degrees to radians: $\times \frac{\pi}{180^{\circ}}$
Radians to degrees: $\times \frac{180^{\circ}}{\pi}$

Marking Scheme Notes

Question 7 (c) (ii) [Scale 5C (0, 2, 3, 4, 5)]
2: - Effort at area of one region
3: - Area of one sector with correct substitution
4: - Area of two sectors with substitution correct in both

